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A Simplified Version of the Fast Algorithms 
of Brent and Salamin 

By D. J. Newman* 

Abstract. We produce more elementary algorithms than those of Brent and Salamin for, 
respectively, evaluating ex and io. Although the Gauss arithmetic-geometric process still plays 
a central role, the elliptic function theory is now unnecessary. 

In their remarkable papers, Brent [1] and Salamin [3], respectively, used the theory 
of elliptic functions to obtain "fast" computations of the function ex and of tbii 
num6er -r. fn both cases rather heavy use of elliptic function theory, such as the 
transformation law of Landen, had to be utilized. Our purpose, in this note, is to 
give a highly simplified version of their constructions. In our approach, for example, 
the incomplete elliptic integral is never used. 

We begin as they did with the Gauss arithmetic-geometric process, T(a, b) = 

((a + b)/2, Va-b) which maps couples with a > b > 0 into same. From the inequali- 
ties 

(a+b)/2-Va a ('- 'b2 a-b 2 

(a + b)/2 + va a ^+ r ( J a+ b!' 

and 

(a + b)/2 a a 

v = 51' Va- v' v b 

we see that T'(a, b) goes to its limiting couple (m, m) (m = m(a, b) the so-called 
arithmetic-geometric mean) with "quadratic" speed. Indeed, m(a, b) is determined 
to n places for an i of around log log a/b + log n. The log log from the V/-7b 
inequality expressing the time till the ratio first goes below 2, and the log from the 
((a - b)/(a + b))2 inequality expressing the time for the error squaring to do its 
job. 

Next, we recall Gauss' beautiful formula: 

mi(a, b) = 7r/J 
c dx 

_oo \(X2 + a2)(x2 + b2) 
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which follows from the fact that this (complete) elliptic integral is invariant under T. 
This fact, that namely 

joo dx Joo dt 

Jo /(x2 + a2)(x2 + b2) -00 /(t2 +((a + b)/2)2)(t2 + ab) 

is a simple consequence of the change of variables t = (x - ab/x)/2. Namely, we 
obtain 

d x2 + ab dx t2 + (a + b )2 (x2 + a2)(X2 + b2) 

2X2 2 4X 2 

t2 + ab = (x2 + ab)2 

4X2 

O < x < so, so that indeed we have 

Joo dx Joo 2dx 
-00 (x2 + a2)(x2 + b2) J (x2 + a2)(x2 + b2) 

f00 dt 

Joo y"(t2 +((a + b)/2)2)(t2 + ab) 

Accordingly, a repeated use of this invariance gives 
coo dx =0O dx 

-oo V(x2 + a2)(x2 + b2) -00 V(x2 + m2)(x2 + m2) 

J0 dx IT 

J 20x + m2 

and this is exactly Gauss' formula. 
Actually, it is handier for us to work with what we might call the harmonic-geo- 

metric mean which can be defined by h(a, b) = ab/m(a, b) or, alternatively, as the 
limit under repeated applications of S, rather than T, where 

S(a, b) = (vab,2ab/(a + b)). 

In these terms Gauss' formula reads 

h(a, b) ufx 
'b T -00 1(1 + x2/a2)(1 + x2/b2) 

The only place that we actually use this formula is to establish the asymptotic 
formula: 

h (N, 1) =2-log4N + O(1/N2). 

(This simple-looking formula certainly deserves an elementary proof independent of 
elliptic integrals, but we are unable to find one.) 

So begin with 

h(N, 1) = 
2 

lo dx 
'IT 0 (1 + X2)(1 + X2/N 2) 
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and observe that the map x -- N/x leaves the integrand invariant. Thereby, we 
conclude 

FN dx oo dx 

Jo (1 + X2)(1 + X2/N2) 
V 

(1 + X2)(1 + X2/N2) 

which gives us 

h(N1l) = dx 
IN=T 0 (1 + x2)(1 + x2/N2) 

= 4 F ( 1 (1 - x2/2N2 + 0(x4/N4)) dx 

=4 N J - x 2)dx+O(1/N2) 

=- (log(V + {N + 1 -1/4N) + 0(1/N2) 

and so, since 

V + ,N +1 = 2vN(1 + 1/(2N + 2;N(N + 1))), 

we obtain 

log(vN + JN+1)= log 2v + 1/4N + 0( ) 

which together with the previous gives 

h(N, 1) = -log2vFN- + (A ) = ,log4N + ? 

as required. (This result can also be found in [2].) 
Summarizing, then, we have produced a fast method for obtaining n places of 

2 log 4N/'r (if N is of the size c"). But, and here is the trick, this combination of IT 

and the logarithm can be used to yield both of them separately, and we can thereby 
rederive both Salamin's and Brent's results. 

To obtain '7 we examine the difference, h(N + 1,1) - h(N, 1), and observe that 
N(h(N + 1, 1) - h(N, 1)) = 2/7T + 0(1/N) which gives n place accuracy for IT if 
we choose, e.g., N = 2n. 

For the logarithm, on the other hand, we look to the quotient, h(N + 1, 1)/h(N, 1). 
This time we obtain 

N h(N + 1 1) log(l + 1/N) + 0(1/N2) 1 
h (N, 1) log4N + 0(1/N) log4N + 0(1/N) 

From this we will be able to evaluate log x throughout the interval (3, 9), and so, of 
course, throughout any interval. And thereby, we will be able to obtain ex, the 
inverse function, by the usual use of the (fast) Newton iteration scheme. 

To obtain log x, then, in the interval (3, 9), we first calculate N = 4x", a process 
that takes only log n multiplications. But then the above formula becomes, upon 
substitution of this value of N, 

ILh _ __Xn 
n 1 1 

4 h( n - = +0logX x n logX 3+ n 

which does give the desired n place evaluation of log x. 
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This trick of "differencing" h(N + 1, 1) and h(N, 1), of course, carries a price. 
Thus we must compute these two quantities to 2n places and so the running time is 
around twice as long as the corresponding ones of Brent and Salamin. 
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